Genetic algorithms reference

Volume I
Crossover for single-objective numerical optimization problems
Contents

1. **Introduction** ... 4
2. **Standard operators**.. 8
 1-Point Crossover .. 8
 k-Point Crossover .. 9
 Shuffle Crossover .. 11
 Reduced Surrogate Crossover .. 12
 Uniform Crossover .. 13
 Heuristic Uniform Crossover, Highly Disruptive Crossover 14
 Average Crossover... 16
 Discrete Crossover... 17
 Flat Crossover .. 18
 Heuristic Crossover /Intermediate Crossover .. 19
 Blend Crossover... 20
3. **Binary operators**.. 22
 Random Respectful Crossover... 22
 Masked Crossover ... 25
 1bit Adaptation Crossover ... 27
 Multivariate Crossover .. 31
 Homologous Crossover.. 33
 Count-preserving Crossover .. 35
 Elitist Crossover... 37
4. **Index of keywords, authors and experiment domains**.............................. 402
Introduction

The literature on Genetic Algorithms or more widely on Evolutionary Computation is full of many excellent books and articles which are texts of introductory or review character. These text concentrate on presentation of fundamental (or most popular at a given time) methods of selection, recombination and mutation etc., so, at the same time, for obvious reasons they overlook (or only mention) most of the output from that field. The similar situation occurs as far as websites on Genetic Algorithms as well as software applying Genetic Algorithms are concerned — the scope of presented or applied methods is considerably limited. Because of that a researcher who is a beginner in that field (though not only beginner) is forced to individually dig in the source texts for less popular methods, new inspirations or answers to the question whether the method he is currently working on is new. Eventually, it is very often the case (which is proved in this book) that the new method which is published, is a duplication of an already existing method or is a slight and not very significant modification of it. The need for comprehensive study is, therefore, obvious and that is the motivation which led to the idea of preparation of this book.

This book is the first of the series of reference books I am working on, with the aim to provide a possibly most comprehensive review of methods developed in the field of Genetic Algorithms. The necessity to concentrate on certain thematic areas is the result of the character of these books. The choice of those areas, even though performed arbitrarily will hopefully reflect their degree of importance and popularity. Hence, in this book which begins the whole series, an operator of the greatest importance for Genetic Algorithms will be presented i.e. crossover operator and its area of application will be single-objective numerical optimization problems. Following publications from this series will be dedicated to selection and mutation operators from the same area of application. After that I will be concentrating on multi-objective optimization problems to, in the end, cover the area of combinatorial optimization problems.

The layout of this book is the following. At the beginning I will present 11 standard operators, where by the term standard I mean those operators which most often appeared in source materials in the 80s and in the beginning of the 90s as a reference point for the newly published methods. The standard operators are presented in an abbreviated form in comparison to the other operators; therefore, some operators which could be undoubtedly qualified to the group of standard operators (e.g Arithmetical Crossover) are described in latter parts of this book in order to make a more complete presentation. The second part of this book presents 66 operators developed for the binary coded problems and the third one presents 89 operators developed for the real-coded problems. In many cases of the presented operators this division is somewhat artificial because they may be applied to solve one as well as the other class of problems. Hence, my decision to present a certain operator in the group of binary or real coded operators is based on the source texts in which, the authors usually specify the application area of that operator. The last part of this book includes the list of statistic-based operators indicating source texts as well as read-also texts.
Let Figure 1 represent quantitative summary, in which the number of operators described in this book is presented according to the years of their publication.

Figure 1 Number of operators described

![Histogram showing the number of operators described by year](image)

In the second and third part of this book every operator is presented according to the same scheme, which is presented below:

- **Keywords** – are supposed to help with searching through the book and also with mutual association of the presented in it operators.
- **Motivation** – showing the motivation which was the base for development of a given operator. This motivation has been formulated by the authors explicite or has been drawn up arbitrarily.
- **Source text** – source text pointing to the website from which that text may be downloaded – most of these sites are free of charge.
- **Read also** – suggested additional texts, the subject matter of which is directly connected with the discussed operator. The choice of these texts, even though it is made arbitrarily, is based mainly on the bibliography list included in the source text or points to the texts describing further development of a given operator or other operators connected with it ideologically. Links to sites where the suggested texts may be downloaded from are also provided.
- **See also** – other operators that in my opinion it is worth to become acquainted with in connection with a given operator. The names of operators are in the same time hyperlinks to these pages of the book that they are discussed on.
- **Algorithm** – presents the discussed operator in the form of a pseudo-code, often in a couple of options. I decided to choose this form of presentation of an operator because it enables, in most cases, immediate application of that operator in practice. On the other hand I decided against usage of a specific programming language because elements appearing in the code additionally, resulting from grammar could make it difficult to understand the presented operator. A presented algorithm may often differ from its original form presented in the source text, it is often the case when the form of an operator
Introduction

was closely connected with the problem for which a given operator has been
developed. However, the key idea of an operator is always presented.

• Comments – commentary or description of the presented operator, depending
 on whether in my opinion pseudocode of an algorithm is a sufficient
 description or not.

• Experiment domains – problems that a given operator has been developed to
 solve or has been tested on, especially in consideration with standard testing
 functions.

• Compared to – list of other crossover operators the presented operator has been
 compared to (in the source text). The names of operators are in the same time
 hyperlinks to these pages of the book that they are discussed on.

Even though it may be disapproved of, I treat the following terms as
variable”, „generation–iteration” and use them as such throughout the text.
Moreover, if it is not indicated explicite to be otherwise, I use following symbols
throughout the text:

\(t \) – generation (iteration) counter

\(M \) – maximum number of generations (iterations)

\(P() \) – population of solution vectors (chromosomes)

\(P(0) \) – initial population

\(P(t) \) – current population

\(P(t+1) \) – next population

\(p_{\text{cross}}, p_c \) – crossover probability

\(p_m \) – mutation probability

\(n \) – length of solution vector (chromosome)

Binary operators

\(A^{(t)} = (a_1^{(t)}, \ldots, a_n^{(t)}) \ \forall i \ a_i^{(t)} \in \{0,1\} \) – binary solution vector (chromosome)

\(f(A^{(t)}) \) – fitness of binary solution vector \(A^{(t)} \)

\(\{A_1^{(t)}, \ldots, A_k^{(t)}\} \in P(t) \) – binary solution vectors (chromosomes)

\(A_j^{(t)} = (a_{j_1}^{(t)}, \ldots, a_{j_n}^{(t)}) \ \forall i, j \ a_{ji}^{(t)} \in \{0,1\} \)

\(f(A_j^{(t)}) \) – fitness of binary solution vector \(A_j^{(t)} \)

Real operators

\(X^{(t)} = (x_1^{(t)}, \ldots, x_n^{(t)}) \in \mathbb{R}^n \) – real solution vector (chromosome)

\(\forall i \ x_i^l \leq x_i \leq x_i^u \) where:
Introduction

\[x_i^l - \text{lower boundary of } i^{th} \text{ variable (gene)}, \]
\[x_i^u - \text{upper boundary of } i^{th} \text{ variable (gene)} \]

\[f(X^{(t)}) - \text{fitness of real solution vector } X^{(t)} \]

\[\{X_1^{(t)},...,X_k^{(t)}\} \in P(t) - \text{real solution vectors (chromosomes)} \]

\[\forall i,j \ X_j^{(t)} = (x_{j1}^{(t)},...,x_{jn}^{(t)}) \in R^n, \ x_i^l \leq x_{ji} \leq x_i^u \quad \text{where:} \]

\[x_i^l - \text{lower boundary of } i^{th} \text{ variable (gene)} \]
\[x_i^u - \text{upper boundary of } i^{th} \text{ variable (gene)} \]

\[f(X_j^{(t)}) - \text{fitness of real solution vector } X_j^{(t)} \]

Upon publishing of whole series of the planned e-books, I plan to prepare supplements once every two years which will cover two years from the date that e-book was published. I plan to send them to all interested readers. Hence, if you wish to receive such a supplement in the future please contact me by e-mail.
1-Point Crossover

(1-PX)

Read also
WEB: http://citeseer.ifi.unizh.ch/62577.html
 http://citeseer.ist.psu.edu/62577.html

Algorithm
1. select two parents $A^{(t)}$ and $B^{(t)}$ from a parent pool
2. create two offspring $C^{(t+1)}$ and $D^{(t+1)}$ as follows:
3. randomly choose one crossover point $cp \in \{1, \ldots, n-1\}$
4. for $i = 1$ to cp do
5. \[c_i^{(t+1)} = a_i^{(t)} \]
6. \[d_i^{(t+1)} = b_i^{(t)} \]
7. end do
8. for $i = cp + 1$ to n do
9. \[c_i^{(t+1)} = b_i^{(t)} \]
10. \[d_i^{(t+1)} = a_i^{(t)} \]
11. end do
k-Point Crossover
(k-PX)

Read also
 WEB: http://citeseer.ifi.unizh.ch/62577.html
 http://citeseer.ist.psu.edu/62577.html

Algorithm
1. select two parents $A^{(t)}$ and $B^{(t)}$ from a parent pool
2. create two offspring $C^{(t+1)}$ and $D^{(t+1)}$ as follows:
3. randomly choose k crossover points $cp_1,...,cp_k \in \{1,...,n-1\}$
4. for $i = 1$ to cp_1 do
5. \[c_i^{(t+1)} = a_i^{(t)} \]
6. \[d_i^{(t+1)} = b_i^{(t)} \]
7. end do
8. switch = 0
9. for $j = 2$ to k do
10. if switch = 0 then
11. for $i = cp_{j-1} + 1$ to cp_j do
12. \[c_i^{(t+1)} = b_i^{(t)} \]
13. \[d_i^{(t+1)} = a_i^{(t)} \]
14. end do
15. switch = 1
16. else
17. for $i = cp_{j-1} + 1$ to cp_j do
18. \[c_i^{(t+1)} = a_i^{(t)} \]
19. \[d_i^{(t+1)} = b_i^{(t)} \]
20. end do
21. switch = 0
Standard operators

22. end if
23. end do
24. if \texttt{switch} = 0 then
25. for \(i = cp_k + 1 \) to \(n \) do
26. \(c_i^{(r+1)} = b_i^{(r)} \)
27. \(d_i^{(r+1)} = a_i^{(r)} \)
28. end do
29. else
30. for \(i = cp_k + 1 \) to \(n \) do
31. \(c_i^{(r+1)} = a_i^{(r)} \)
32. \(d_i^{(r+1)} = b_i^{(r)} \)
33. end do
34. end if
Shuffle Crossover

(SC)

Read also
WEB: http://intl.ieeeexplore.ieee.org/xpl/abs_free.jsp?arnumber=782671

Algorithm
1. select two parents $A(t)$ and $B(t)$ from a parent pool
2. create two offspring $C(t+1)$ and $D(t+1)$ as follows:
3. randomly shuffle (in the same way) the genes in both parents
4. randomly choose one crossover point $cp \in \{1, \ldots, n-1\}$
5. for $i = 1$ to cp do
6. $c_i^{(t+1)} = a_i^{(t)}$
7. $d_i^{(t+1)} = b_i^{(t)}$
8. end do
9. for $i = cp + 1$ to n do
10. $c_i^{(t+1)} = b_i^{(t)}$
11. $d_i^{(t+1)} = a_i^{(t)}$
12. end do
13. unshuffle the genes in both offspring
Reduced Surrogate Crossover (SC)

Algorithm
1. select two parents $A^{(t)}$ and $B^{(t)}$ from a parent pool
2. create a list $PCP = (cp_1, ..., cp_l)$ of possible l crossover points as follows:
3. $l = 0$
4. for $i = 1$ to n do
5. if $a_i^{(t)} \neq b_i^{(t)}$ then
6. $l = l + 1$
7. $cp_i = i$
8. end if
9. end do
10. if $l > 0$ then
11. create two offspring $C^{(t+1)}$ and $D^{(t+1)}$ as follows:
12. randomly choose one crossover point $cp \in PCP(cp_1, ..., cp_l)$
13. for $i = 1$ to cp do
14. $c_i^{(t+1)} = a_i^{(t)}$
15. $d_i^{(t+1)} = b_i^{(t)}$
16. end do
17. for $i = cp + 1$ to n do
18. $c_i^{(t+1)} = b_i^{(t)}$
19. $d_i^{(t+1)} = a_i^{(t)}$
20. end do
21. else
22. do nothing
23. end if
Uniform Crossover
(UX)

Read also
 WEB: http://citeseer.ifi.unizh.ch/spears91virtues.html
 http://citeseer.ist.psu.edu/spears91virtues.html
 WEB: http://sci2s.ugr.es/publications/
- Cotta C., Troya J.M. (2000), Using Dynastic Exploring Recombination to Promote Diversity in Genetic Search, in *Parallel Problem Solving from Nature - 6th International Conference*, Springer Verlag, pp. 16-20
 WEB: http://citeseer.ifi.unizh.ch/cotta00using.html
 http://citeseer.ist.psu.edu/cotta00using.html

Algorithm UX
1. select two parents $A(t)$ and $B(t)$ from a parent pool
2. create two offspring $C(t+1)$ and $D(t+1)$ as follows:
3. for $i = 1$ to n
4. choose a uniform random real number $u \in <0,1>$
5. if $u \leq p_s$ then (swap bits)
6. $c_i^{(t+1)} = b_i^{(t)}$
7. $d_i^{(t+1)} = a_i^{(t)}$
8. else (don’t swap)
9. $c_i^{(t+1)} = a_i^{(t)}$
10. $d_i^{(t+1)} = b_i^{(t)}$
11. end if
12. end do

where:
p_s – probability of swapping, in standard form $p_s = 0.5$
Heuristic Uniform Crossover, Highly Disruptive Crossover

(HUX)

Read also
WEB: http://citeseer.ifi.unizh.ch/spears91virtues.html
http://citeseer.ist.psu.edu/spears91virtues.html
WEB: http://sci2s.ugr.es/publications/
- Cotta C., Troya J.M. (2000), Using Dynastic Exploring Recombination to Promote Diversity in Genetic Search, in Parallel Problem Solving from Nature - 6th International Conference, Springer Verlag, pp. 16-20
WEB: http://citeseer.ifi.unizh.ch/cotta00using.html
http://citeseer.ist.psu.edu/cotta00using.html

Algorithm HUX
1. select two parents \(A^{(t)}\) and \(B^{(t)}\) from a parent pool
2. create two offspring \(C^{(t+1)}\) and \(D^{(t+1)}\) as follows:
3. \(C^{(t+1)} = A^{(t)}\)
4. \(D^{(t+1)} = B^{(t)}\)
5. number_of_different_genes = 0
6. for \(i = 1\) to \(n\) do
7. if \(c_i^{(t+1)} \neq d_i^{(t+1)}\) then
8. number_of_different_genes = number_of_different_genes + 1
9. end if
10. end do
11. swap_counter = 0
12. do while swap_counter \(\leq\) number_of_different_genes/2
13. for \(i = 1\) to \(n\) do
Standard operators

14. \[\text{if } c_i^{(r+1)} \neq d_i^{(r+1)} \text{ and } c_i^{(r+1)} \neq b_i^{(r)} \text{ then} \]

15. \[\text{choose a uniform random real number } u \in <0,1> \]

16. \[\text{if } u \leq 0.5 \text{ then (swap bits)} \]

17. \[c_i^{(r+1)} = b_i^{(r)} \]

18. \[d_i^{(r+1)} = a_i^{(r)} \]

19. \[\text{swap}_\text{counter} = \text{swap}_\text{counter} + 1 \]

20. \[\text{end if} \]

21. \[\text{end if} \]

22. \[\text{end do} \]

23. \[\text{loop} \]
Standard operators

Average Crossover

(AX)

Read also
 WEB: http://citeseer.ifi.unizh.ch/62577.html
 http://citeseer.ist.psu.edu/62577.html
 WEB: http://citeseer.ist.psu.edu/fernandes01using.html
 http://citeseer.ifi.unizh.ch/fernandes01using.html

Algorithm
1. select two parents \(X(t) \) and \(Y(t) \) from a parent pool
2. create one offspring \(X(t+1) \) as follows:
3. for \(i = 1 \) to \(n \) do
4. \[x_{i}^{(t+1)} = \frac{x_{i}^{(t)} + y_{i}^{(t)}}{2} \]
5. end do
Discrete Crossover (DC)

Read also
WEB: http://citeseer.ifi.unizh.ch/voigt95fuzzy.html
http://citeseer.ist.psu.edu/voigt95fuzzy.html
http://www.amspr.gfai.de/publications_de.htm
WEB: http://citeseer.ifi.unizh.ch/mtihlenbein93predictive.html
http://citeseer.ist.psu.edu/mtihlenbein93predictive.html
http://www.ais.fhg.de/~muehlen/pegasus/publications.html

Algorithm
1. select two parents X^0 and Y^0 from a parent pool
2. create one offspring X^{t+1} as follows:
3. for $i = 1$ to n do
4. choose a uniform random real number $u \in \langle 0, 1 \rangle$
5. if $u \leq 0.5$ then
6. $x_{i}^{(t+1)} = x_{i}^{(t)}$
7. else
8. $x_{i}^{(t+1)} = y_{i}^{(t)}$
9. end if
10. end do
Flat Crossover

(FC)

Read also

WEB: http://citeseer.ifi.unizh.ch/herrera98tackling.html
 http://citeseer.ist.psu.edu/herrera98tackling.html

Algorithm

1. select two parents $X(t)$ and $Y(t)$ from a parent pool
2. create one offspring $X(t+1)$ as follows:
3. for $i = 1$ to n do
4. choose a uniform random real number
 $\alpha \in \langle \min(x_i^{(t)}, y_i^{(t)}), \max(x_i^{(t)}, y_i^{(t)}) \rangle$
5. $x_i^{(t+1)} = \alpha$
6. end do
Heuristic Crossover /Intermediate Crossover
(HC/IC)

Read also
WEB: http://citeseer.ifi.unizh.ch/voigt95fuzzy.html
 http://citeseer.ist.psu.edu/voigt95fuzzy.html
 http://www.amspr.gfai.de/publications_de.htm
WEB: http://citeseer.ifi.unizh.ch/mthilhenbein93predictive.html
 http://citeseer.ist.psu.edu/mthilhenbein93predictive.html
 http://www.ais.fhg.de/~muehlen/pegasus/publications.html
WEB: http://citeseer.ifi.unizh.ch/herrera98tackling.html
 http://citeseer.ist.psu.edu/herrera98tackling.html

Algorithm
1. select two parents \(X^{(t)}\) and \(Y^{(t)}\) from a parent pool
2. create one offspring \(X^{(t+1)}\) as follows:
 3. for \(i = 1\) to \(n\) do
 4. assume that \(x_i^{(t)} \leq y_i^{(t)}\)
 5. choose a uniform random real number \(\alpha \in <0,1>\)
 6. \(x_i^{(t+1)} = x_i^{(t)} + \alpha (y_i^{(t)} - x_i^{(t)})\)
 7. end do

Comments
Parameter \(\alpha\) may be of constant value equal to 0.5 or may be selected by a draw from interval \(<0,1>\) (row: 5).
Standard operators

Blend Crossover

(BLX-\(\alpha\), BLX-\(\alpha-\beta\))

Read also

 WEB: http://www3.interscience.wiley.com

 http://dx.doi.org/10.1002/int.10091

Algorithm BLX-\(\alpha\)

1. select two parents \(X^{(t)}\) and \(Y^{(t)}\) from a parent pool
2. create two offspring \(X^{(t+1)}\) and \(Y^{(t+1)}\) as follows:
 3. for \(i = 1\) to \(n\) do
 4. \(d_i = |x_i^{(t)} - y_i^{(t)}|\)
 5. choose a uniform random real number
 \(u \in \left\{ \min(x_i^{(t)}, y_i^{(t)}) - \alpha d_i, \max(x_i^{(t)}, y_i^{(t)}) + \alpha d_i \right\}\)
 6. \(x_i^{(t+1)} = u\)
 7. choose a uniform random real number
 \(u \in \left\{ \min(x_i^{(t)}, y_i^{(t)}) - \alpha d_i, \max(x_i^{(t)}, y_i^{(t)}) + \alpha d_i \right\}\)
 8. \(y_i^{(t+1)} = u\)
 9. end do

where:
\(\alpha\) – positive real parameter

Algorithm BLX-\(\alpha-\beta\)

1. select two parents \(X^{(t)}\) and \(Y^{(t)}\) from a parent pool
2. assume that \(X^{(t)}\) is better than \(Y^{(t)}\)
3. create two offspring \(X^{(t+1)}\) and \(Y^{(t+1)}\) as follows:
 4. for \(i = 1\) to \(n\) do
 5. \(d_i = |x_i^{(t)} - y_i^{(t)}|\)
6. if $x_i^{(t)} \leq y_i^{(t)}$ then

7. choose a uniform random real number

$$ u \in \left(x_i^{(t)} - \alpha d_i, y_i^{(t)} + \beta d_i \right) $$

8. $x_i^{(t+1)} = u$

9. choose a uniform random real number

$$ u \in \left(x_i^{(t)} - \alpha d_i, y_i^{(t)} + \beta d_i \right) $$

10. $y_i^{(t+1)} = u$

11. else

12. choose a uniform random real number

$$ u \in \left(y_i^{(t)} - \beta d_i, y_i^{(t)} + \alpha d_i \right) $$

13. $x_i^{(t+1)} = u$

14. choose a uniform random real number

$$ u \in \left(y_i^{(t)} - \beta d_i, y_i^{(t)} + \alpha d_i \right) $$

15. $y_i^{(t+1)} = u$

16. end do

where:

α, β – positive real parameters
Binary operators

Random Respectful Crossover
(R3)(RRC)

Keywords
schema, similarity

Motivation
• Offspring generation from a similarity set of the parents.

Source text
WEB: http://users.breathe.com/njr/formaPapers.html
 http://citeseer.ist.psu.edu/radcliffe91formal.html

Read also
WEB: http://citeseer.ifi.unizh.ch/watson00recombination.html
 http://citeseer.ist.psu.edu/watson00recombination.html
WEB: http://ieeexplore.ieee.org/xpl/abs_free.jsp?arNumber=1413243
WEB: http://citeseer.ifi.unizh.ch/62577.html
 http://citeseer.ist.psu.edu/62577.html

See also
• Hierarchical Crossover
• Disrespectful Crossover
• Asymmetric Two-point Crossover
• Variation of Asymmetric Two-point Crossover
• Homologous Crossover
• Schema-Based Crossover
• Adaptive Probability Crossover-4
Algorithm
1. select two parents $A^{(t)}$ and $B^{(t)}$ from a parent pool
2. create a similarity vector $S^{AB} = (s_{1}^{AB}, ..., s_{n}^{AB})$ as follows:
 for $i = 1$ to n do
 if $a_{i}^{(t)} = b_{i}^{(t)}$ then
 $s_{i}^{AB} = a_{i}^{(t)}$
 else
 $s_{i}^{AB} = NULL$
 end if
 end do
3. create two offspring $C^{(t+1)}$ and $D^{(t+1)}$ as follows:
 for $i = 1$ to n do
 if $s_{i}^{AB} = 1$ then
 $c_{i}^{(t+1)} = 1$
 $d_{i}^{(t+1)} = 1$
 else if $s_{i}^{AB} = 0$ then
 $c_{i}^{(t+1)} = 0$
 $d_{i}^{(t+1)} = 0$
 else if $s_{i}^{AB} = NULL$ then
 choose a uniform random real number $u \in <0,1>$
 if $u \leq 0.5$ then
 $c_{i}^{(t+1)} = 1$
 else
 $c_{i}^{(t+1)} = 0$
 end if
 choose a uniform random real number $u \in <0,1>$
 if $u \leq 0.5$ then
 $d_{i}^{(t+1)} = 1$
Binary operators

28. else
29. \[cd_i^{(r+1)} = 0 \]
30. end if
31. end if
32. end do

Comments
- The R3 algorithm duplicates genes of parents in an offspring at every position at which they are identical (rows: 12-17). At positions where values of the parent genes are different they are determined at random (rows: 18-31).

Experiment domains
- n/a

Compared to
- n/a
Masked Crossover

(MX)

Keywords
adaptive, fitness driven crossover, schema preservation, epistasis

Motivation
• Protecting good schemata from destruction.
• Searching through the solution space in promising directions depending on fitness.

Source text
WEB: http://citeseer.ifi.unizh.ch/louis91designer.html
http://citeseer.ist.psu.edu/louis91designer.html

Read also
WEB: http://Intl.ieeeexplore.ieee.org/xpl/abs_free.jsp?arNumber=350048
WEB: http://citeseer.ifi.unizh.ch/vekaria99biases.html
http://citeseer.ist.psu.edu/vekaria99biases.html
WEB: http://Intl.ieeeexplore.ieee.org/xpl/abs_free.jsp?arNumber=839167

See also
• Knowledge-Based Nonuniform Crossover

Algorithm
1. select two parents $A^{(t)}$ and $B^{(t)}$ from a parent pool
2. create two offspring $C^{(t+1)}$ and $D^{(t+1)}$ as follows:
3. for $i = 1$ to n do
4. $c_i^{(t+1)} = a_i^{(t)}$
5. $d_i^{(t+1)} = b_i^{(t)}$
6. end do
7. for $i = 1$ to n do
8.
 if $p_i^B = 1$ and $p_i^A = 0$ then
9.
 $c_i^{(t+1)} = b_i^{(t)}$
10. end if
11. if $p_i^A = 1$ and $p_i^B = 0$ then
12.
 $d_i^{(t+1)} = a_i^{(t)}$
13. end if
14. end do

where:
\[P^A = (p_1^A, ..., p_n^A) \] – crossover mask of the parent $A^{(t)}$, $\forall i \ p_i^A \in \{0,1\}$
\[P^B = (p_1^B, ..., p_n^B) \] – crossover mask of the parent $B^{(t)}$, $\forall i \ p_i^B \in \{0,1\}$

Comments
- The MX operator uses a mask vector to determine which bits of which parent are inherited by the offspring. The first step is the duplication of the bits of the parents. The bits of the first parent are copied to the first offspring and, accordingly, of the second parent to the second offspring (rows: 3-6). In the second step, the offspring exchange bits among each other (rows: 9 and 12) at those positions where the mask vectors of the parent were equal to 1, indicated domination of that parent at that position and the mask vectors of the other parent were equal to 0 (rows: 8 and 11).
- The mask vectors are initiated in $P(0)$ randomly. During every GA iteration, the mask vectors are inherited by each offspring from its parent. Then the mask vectors of the offspring as well as the parents undergo modification. The modification process (not described here) is based on the comparison of fitness of the offspring and the parents. If good offspring were created, the masks of the parents do not need to be modified and the masks of the offspring may be very similar to those of the parents. In a situation where bad offspring were created the masks of the parents as well as of the offspring need to be modified.

Experiment domains
- n-bit parity checker
- n-bit adder

Compared to
- 1-Point Crossover
1bit Adaptation Crossover
(1BX)

Keywords
adaptive, recombination model, combination of crossovers

Motivation
• Obtaining different trajectories of searching the solution space through simultaneous application of two operators of diametrically opposite characteristics.

Source text

Read also
WEB: http://www.maics.us/proceedings.htm
WEB: http://sci2s.ugr.es/publications/
http://dx.doi.org/10.1007/s00500-004-0380-9

See also
• k-Point Crossover
• Uniform Crossover
• Combined Balanced Crossover
• Adaptive Strategies of Mixing Crossovers

Algorithm
1. select two parents $A^{(i)}$ and $B^{(i)}$ from current population $P(t)$
2. choose a uniform random real number $u \in <0, 1>$
3. if $a_n^{(i)} = b_n^{(i)} = 1$ then
4. create two offspring $C^{(i+1)}$ and $D^{(i+1)}$ offspring by the 2-Point Crossover as follows:
5. randomly choose two crossover points $cp_1, cp_2 \in \{1, \ldots, n-1\}$ ($cp_1 < cp_2$)
6. for $i = 1$ to cp_1 do
Binary operators

7. \(c_i^{(t+1)} = a_i^{(t)} \)
8. \(d_i^{(t+1)} = b_i^{(t)} \)
9. end do
10. for \(i = cp_1 + 1 \) to \(cp_2 \) do
11. \(c_i^{(t+1)} = b_i^{(t)} \)
12. \(d_i^{(t+1)} = a_i^{(t)} \)
13. end do
14. for \(i = cp_2 + 1 \) to \(n \) do
15. \(c_i^{(t+1)} = a_i^{(t)} \)
16. \(d_i^{(t+1)} = b_i^{(t)} \)
17. end do
18. else if \(a_n^{(t)} = b_n^{(t)} = 0 \) then
19. create two offspring \(C^{(t+1)} \) and \(D^{(t+1)} \) by the Uniform Crossover as follows:
20. for \(i = 1 \) to \(n \) do
21. choose a uniform random real number \(u \in <0,1> \)
22. if \(u \leq p_s \) then (swap bits)
23. \(c_i^{(t+1)} = b_i^{(t)} \)
24. \(d_i^{(t+1)} = a_i^{(t)} \)
25. else (don’t swap)
26. \(c_i^{(t+1)} = a_i^{(t)} \)
27. \(d_i^{(t+1)} = b_i^{(t)} \)
28. end if
29. end do
30. else
31. choose a uniform random real number \(u \in <0,1> \)
32. if \(u < 0.5 \) then
33. create two offspring \(C^{(t+1)} \) and \(D^{(t+1)} \) by the Uniform Crossover as follows:
34. for $i = 1$ to n do
35. choose a uniform random real number $u \in \langle 0,1 \rangle$
36. if $u \leq p_s$ then (swap bits)
37. $c_i^{(t+1)} = b_i^{(t)}$
38. $d_i^{(t+1)} = a_i^{(t)}$
39. else (don’t swap)
40. $c_i^{(t+1)} = a_i^{(t)}$
41. $d_i^{(t+1)} = b_i^{(t)}$
42. end if
43. end do
44. else
45. create two offspring $C^{(t+1)}$ and $D^{(t+1)}$ by the 2-Point Crossover as follows:
46. randomly choose two crossover points $cp_1, cp_2 \in \{1, \ldots, n-1\}$ ($cp_1 < cp_2$)
47. for $i = 1$ to cp_1 do
48. $c_i^{(t+1)} = a_i^{(t)}$
49. $d_i^{(t+1)} = b_i^{(t)}$
50. end do
51. for $i = cp_1 + 1$ to cp_2 do
52. $c_i^{(t+1)} = b_i^{(t)}$
53. $d_i^{(t+1)} = a_i^{(t)}$
54. end do
55. for $i = cp_2 + 1$ to n do
56. $c_i^{(t+1)} = a_i^{(t)}$
57. $d_i^{(t+1)} = b_i^{(t)}$
58. end do
59. end if
60. end if
where:
\(p_s \) – probability of swapping, in standard form \(p_s = 0.5 \)

Comments
- In the 1BX method the last bit of the solution vector is reserved for the code of one of the two of the applied crossover operators. Assuming that “0” corresponds with the Uniform Crossover (UX) operator and “1” corresponds with the 2-Point Crossover (2-PX) operator, the choice of one of them is made according to the rule: if the last bit of the parents is off the same value (rows: 3 and 18) then choose the operator indicated by this bit (rows: 4 and 19). Otherwise choose the operator through selection by a draw (rows: 32 and 44).
- Application of the described crossover scheme combines the choice of the operator with the solution vector. Moreover, this choice is carried out separately for each parent pair; hence this scheme is called local adaptation. Global adaptation version has been also presented, but as it was emphasized by the author, significantly worse results were obtained by its application.

Experiment domains
- n-peak problems

Compared to
- k-Point Crossover
- Uniform Crossover
Multivariate Crossover
(MC)

Keywords
variable-to-variable recombination

Motivation
• Effective optimization of multivariate functions.

Source text
WEB: http://portal.acm.org/citation.cfm?id=131228

Read also
WEB: http://intl.ieeeexplore.ieee.org/xpl/abs_free.jsp?arNumber=489190
WEB: http://citeseer.ifi.unizh.ch/deb95optimizing.html
http://citeseer.ist.psu.edu/deb95optimizing.html

See also
• Chromosome Shuffling
• 2N-Parent Parameter Wise Crossover

Algorithm
1. select two parents $A^{(t)}$ and $B^{(t)}$ form a parent pool
2. assume that each parent vector is divided into q substrings $s_{ij}^{(t)}$, where q is the number of parameters represented in each parent vector i.e. each

$s_{ij}^{(t)}$ (i=A,B; j=1,...,q) represents a j^{th} parameter; hence $A^{(t)} = (s_{A1}^{(t)},...,s_{AQ}^{(t)})$, $B^{(t)} = (s_{B1}^{(t)},...,s_{BQ}^{(t)})$
3. create two offspring $C^{(t+1)}$ and $D^{(t+1)}$ as follows:
4. for $j = 1$ to q do
5. if $Rnd \leq p_c$ then
Binary operators

6. perform crossover between $s_{A_j}^{(t)}$ and $s_{B_j}^{(t)}$

7.
 $s_{C_j}^{(t+1)} = s_{A_j}^{(t)} \otimes s_{B_j}^{(t)}$

8.
 $s_{D_j}^{(t+1)} = s_{A_j}^{(t)} \otimes s_{B_j}^{(t)}$

9. else

10.
 $s_{C_j}^{(t+1)} = s_{A_j}^{(t)}$

11.
 $s_{D_j}^{(t+1)} = s_{B_j}^{(t)}$

12. end if

13. end do

where:

\otimes – standard 1-Point Crossover operator

Rnd – uniform random real number, $Rnd \in <0,1>$

Comments

• The most fundamental difference between the MC operator and other operators using variable-to-variable recombination is that the answer to the question “whether to crossover” is checked in the MC method separately for each substring (row: 5). As for the other operators, the answer to that question refers to the parent vector as a whole.

Experiment domains

• function taken from the National Crime Survey

Compared to

• k-Point Crossover
Homologous Crossover

(HX)

Keywords
information exchanging, information destruction, convergence speed, non-disruptive crossover, optimal crossover points

Motivation
- Reduction of the destructive action of a multi-point crossover operator resulting from random selection of crossover points

Source text

Read also
WEB: http://citeseer.ifi.unizh.ch/361714.html http://citeseer.ist.psu.edu/361714.html

See also
- Spontaneous Crossover
- Circle-ring Crossover
- Sufficient Exchanging
- Intermediate Crossover
- Intermediate Crossover2
- Adaptive Number of Crossover Points

Algorithm
1. select two parents \(A(t)\) and \(B(t)\) from a current population \(P(t)\)
2. randomly choose \(m\) crossover points \(\{pc_1, \ldots, pc_m\}\)
3. create two offspring \(A(t+1)\) and \(B(t+1)\) by restricted \(m\)-point crossover as follows:
4. for every pair of strings \(ST_A = (a_{pc_1}, \ldots, a_{pc_{k+1}}) \in A(t)\) and \(ST_B = (b_{pc_1}, \ldots, b_{pc_{k+1}}) \in B(t)\) between two successive crossover points \(pc_k\) and \(pc_{k+1}\) do:
5. if \(\text{length}_\text{of}_{ST_A} (= \text{length}_\text{of}_{ST_B}) \geq \varpi\) then
6. compute the degree of similarity \(DS\) of strings \(ST_A\) and \(ST_B\) as follows:
7. \(\text{number}_\text{of}_1 = 0\)
Binary operators

8. for $i = k$ to $k + \varpi$ do
9. \[\text{if } a_{pc}^{(t)} \text{ XOR } b_{pc}^{(t)} = 1 \text{ then} \]
10. \[\text{number_of_1} = \text{number_of_1} + 1 \]
11. \[\text{end if} \]
12. \[\text{end do} \]
13. $DS = \frac{\text{number_of_1}}{\text{length_of_ST}A}$
14. \[\text{if } DS \geq \tau \text{ then} \]
15. swap bits
16. else
17. do nothing
18. end if
19. else
20. do nothing
21. end if
22. end do

where:
ϖ and τ – parameters of the method

Comments
- The HX operator is based on the standard k-Point Crossover operator. Introduced modification relies on the fact that only strings of bits which are at least of a certain length (row: 5) or of an admissible degree of similarity (row: 14) are allowed to crossover. Determination of the degree of similarity is based on the XOR operator (rows: 9-13).
- This strategy is aimed at transferring (hence also protecting) strings with specified parameters to the next generation.
- In HX the value of ϖ and τ is determined à priori as constant or dynamically changed (increased) in the GA run.

Experiment domains
- De Jong’s function (F1)

Compared to
- k-Point Crossover
- Uniform Crossover
- Intermediate Crossover
- Intermediate Crossover2
Count-preserving Crossover (CPC)

Keywords
number of “1” preservation

Motivation
- Preserving constant number of bits equal to “1” in every chromosome of a population.

Source text
WEB: http://citeseer.ifi.unizh.ch/hartley93using.html
http://citeseer.ist.psu.edu/hartley93using.html

Read also

See also
- Count-preserving Crossover-2
- Set-Oriented Crossover
- Self Crossover

Algorithm
1. select two parents $A^{(i)} = (a_1^{(i)}, ..., a_n^{(i)})$ and $B^{(i)} = (b_1^{(i)}, ..., b_n^{(i)})$ from a parent pool
2. create two lists of differences L_{up} and L_{down} as follows:
3. $L_{up}= empty_list, L_{down}= empty_list, L_length = 0$
4. for $i = 1$ to n do
5. if $a_i = 1$ and $b_i = 0$ then
6. append i to L_{up}
7. $L_length = L_length + 1$
8. else if $a_i = 0$ and $b_i = 1$ then
9. append i to L_{down}
10. end if
11. end do
12. create two offspring $A^{(t+1)}$ and $B^{(t+1)}$ as follows:
13. copy all bits from parent $A^{(t)}$ to offspring $A^{(t+1)}$
14. copy all bits from parent $B^{(t)}$ to offspring $B^{(t+1)}$
15. for $j = 1$ to L_length do
16.
17. if $\text{Rnd} < 0.5$ then
18.
19.
20. end if
20. end do

where:
Rnd – uniform random real number , $\text{Rnd} \in <0,1>$
L_length – number of elements in the L^{up} and L^{down}
L_j^{up} – j^{th} element of L^{up}
L_j^{down} – j^{th} element of L^{down}

Comments
- The CPC operator carries out its task (see: motivation) assuming, that the number of bits equal to “1” in every chromosome in the initial population $P(0)$ is the same.
- CPC may guarantee preservation of the constant number of bits equal to “1” due to application of two lists noting the differences between the parents (rows: 3-11). List L^{up} includes positions (numbers) of those bits, on which there are differences between the parents, but the first parent at a given position holds a bit equal to “1” and the second equal to “0” (row: 5). List L^{down} similarly notes the positions of differences, but the first parent at a given position holds a bit equal to “0” and the second equal to “1” (row: 8). The offspring creation process making use of those lists is based on the exchange of bits between the offspring at those positions which, are indicated by subsequent element pairs from lists L^{up} and L^{down} (rows: 17 and 18).
- Number of elements in L^{up} and in L^{down} is the same, which is a direct result of the assumption, that the number of bits equal to “1” is constant for all chromosomes in $P(0)$.

Experiment domains
- n/a

Compared to
- n/a
Elitist Crossover

(EX)

Keywords
selection, exploration, exploitation, exploration/exploitation balance, competition for survival

Motivation
• Assessing the effectivity of integrating the selection and crossover processes.

Source text
WEB: http://intl.ieeeexplore.ieee.org/xpl/abs_free.jsp?arNumber=349898
http://www.cs.uu.nl/groups/DSS/publications/

Read also
WEB: http://citeseer.ifi.unizh.ch/vekaria98selective.html
http://citeseer.ist.psu.edu/vekaria98selective.html
WEB: http://citeseer.ifi.unizh.ch/coli96new.html
http://citeseer.ist.psu.edu/coli96new.html

See also
• Best Schema Crossover
• Selective Crossover-2
• Partially Randomized Crossover
• Direct Design Variable Exchange Crossover

Algorithm
1. for every generation of GA do
2. randomly shuffle the entire population $P(t) = \{A_1^{(t)},...,A_{Population_size}^{(t)}\}$
3. for $i = 1$ to $Population_size$ do
4. create two vectors V_1 and V_2:
 $$V_1 = A_i^{(t)} \otimes A_{i+1}^{(t)}$$
 $$V_2 = A_i^{(t)} \otimes A_{i+1}^{(t)}$$
5. compute the fitness value of V_1 and V_2

6. insert best two vectors of $\{A_i^{(i)}, A_{i+1}^{(i)}, V_1, V_2\}$ into the next population $P(t+1)$ as offspring

7. $i = i + 2$

8. end do

where:
⊗ – preferred crossover method

Comments
- In the standard genetic algorithm, the selection process is always preceded by the crossover process. In the EX method both of the processes are integrated. During the first step the entire population is randomly shuffled (row: 2). Then, from each successive pair of parental vectors, two new vectors are created by crossover (row: 4). From a “family” created in this way, two best vectors are singled out and implemented as offspring to the next population (row: 6).
- Application of elitist selection in the traditional way that is on the level of the entire population may often be the reason for the premature convergence of the algorithm. An EX elitist selection applied on the “family” level (row: 6) eliminates this danger according to the authors.

Experiment domains
- bit counting function
- fully deceptive trap function

Compared to
- Uniform Crossover
Index of keywords, authors and experiment domains

A

adaptive culture model.......................390
adaptive length chromosome296
allele distribution156
alternative to crossover . 68, 75, 102, 106, 126, 308
approximation..................................251, 253

Author

Abbas H.A............. 274, 288, 291, 323
Abdel-Aty-Zohdy A.S. 161
Acan A. 158, 303, 308, 326
Adachi N.251, 253
Agrawal R.B. 211
Aitken J.M..............................320
Alfonso H....................... 237, 261
Alliot J.-M..............................245
Altincay H. 158, 303, 326
Anand A. 397
Anderson K.S. 251, 253, 306
Angantyr A.333
Angelov P.P. 268
Antonsson E.K. 148, 200
Aydin M.E............ 276, 344, 347, 355, 364
Bäck T. 55
Bandypopadhyay S. 62, 91
Barrido S.C.294
Beasley J.E. 87
Beldiman L.............................. 16, 17
Belea R. 16, 17
Bendisch J. 213
Bentley P.J. 62
Bersini H. 208, 235
Beyer H.-G. 36, 211
Bhattacharyya S.156
Bi Z. 172, 266
Blaise Madeline 298, 300
Bort E. 257, 392
Buczak A.L.274
Bullinaria J.A. 166
Burdssl B. 239, 286
Burke D.S.148
Burkowski F.J.........................14
Cabido R. 121
Callaghan V203
Cantů-Paz E. 137, 139
Cao H. 249
Caprani O. 198, 257, 392
Cen L. 185
Chakraborty G. 255, 370
Chan Ch.-H. 370
Chan K.P. 397
Chan K.Y.............. 170, 276, 344, 347, 355, 364
Chang Ch.-Y.........................379
Chang H.C. 340
Chang Y.-H. 38, 97, 179
Chen J.-N......................... 28
Chen P.H. 340
Chen S. 123
Chen Y. 249
Cheng H. 288, 370
Cheung Y.-M......................... 174
Chou Ch.-H. 28
Chou J.-H........... 251, 351, 355, 388
Chu P.C. 87
Chuwu P. 145, 384
Clack C. 28, 40, 94
Clarke G. 203
Coello Coello C. A.394
Coghill G. 358
Coli M...................... 40, 55, 141, 145
Colley M.203
Colomi A. 390
Cordón O. 16, 17
Costa E. 102, 106, 126, 308
Cotta C. 16, 17, 239, 386
Covic G. 358
Cremonesi R.R 329
Cvetković D................. 20, 22, 213
Dadios E.P. 294
Dallaali M.A.372
Damasceno S. 16, 17
De Falco I.386
De Jong K.A. 16, 17, 148
De San Pedro M.E. 237
de’ Garis H. 249
Deb K. 34, 55, 116, 143, 211, 397
Delgado M.R. 329

402
Index of keywords, authors and experiment domains

Della Cioppa A........................386
Demiröz G........................227
Dolezal O........................121
Dongarra J........................396
Dorigo M........................390
Dotoli M..........................222
Drake S..........................276
Duarte A..........................121
Durand N..........................245
Eberhart R.C......................390
Eiben A.E........................141, 58, 82, 91, 100, 152, 166, 170, 182, 241, 243, 247, 329, 362
Emmanouilidis C..................123
Erbatur F........................141, 143, 394
Esquivel S.C....................82, 237, 261, 303
Estivill-Castro V................84
Ewing R.L..........................161
Fernandes C......................19, 270, 272
Fernandez F......................121
Ferrero S........................237, 261
Fogarty T.C......................53, 170, 188, 276, 298, 344, 347, 355, 364
Foley Ch.M.......................102, 106
Franceschini G...................257, 392
Fuller A.T.G.....................222
Furuhashi T......................68, 75
Gagliardi F......................239, 386
Galla T.M..........................89
Gallant P.J........................320
Gallard R.H.......................82, 237, 261, 303
Gang Z............................145, 384
Gantala D........................161
García-Pedrajas N..............398
Genusso P.......................40, 55, 141, 145
Ghosh A........................100, 241, 243, 247, 375
Gibson G.M......................222, 333
Giraud-Carrier Ch..............239, 286
Goldberg D.E.....................40, 80, 116, 263, 397
Gong D.........................163, 182, 268, 362, 375
Gow H.-J............................379
Goyal M..........................34, 55, 143
Grefenstette J.J...............148, 255
Guerra-Salcedo C..............123
Guo T..............................249
Guokun Z........................172
Guvenir H.A......................227
Gwiazda T.D.....................177, 303, 394
Hagras H..........................203
Han L............................296, 320
Han M............................36, 49, 51, 163
Harik G.R.......................80, 116
Hartley S.J......................34, 38, 97, 179
Harvey I............................68, 75, 148
Hasançebi O.....................141, 143, 394
Hasegawa K......................68, 75, 102, 106, 126, 308
Herrera F........................21, 22, 23, 30, 70, 158, 174, 206, 213, 215, 303, 316, 326, 353
Hervás-Martínez C.............398
Higuchi T........................263
Hinterding R.....................200, 329
Hiroyasu T......................137, 139, 145, 396
Hirsh H............................259
Ho S.-Y.............................344
Hofmeister T....................121
Hong I..............................70, 174
Hoshi K...........................255, 370
Hou C.-Z.........................291, 368
Hou Y.-Ch......................38, 97, 179
Hsu Y..............................251, 253, 306
Huang Ch.-H....................366
Huang D.-S......................177
Huang J.-H......................366
Hunter A..........................123
Husbands P......................276
Ishibuchi H.....................158
Jain L..............................100, 247
Jankovic Z......................194, 196
Jannett T.C......................390
Jian W..............................203, 368, 381
Jian Y..............................306
Jianfu T...........................296
Jiao L..............................266, 368, 381
Jichang G.......................296
Jin G...............................251, 253
Jones T.C........................218, 220
Joshi D.............................397
Joyner C.R.......................72, 282, 344, 347, 355
Ju P...............................288, 370
Kahng A.B.......................70, 174
Kang L.............................249, 318
Kanoh H.........................68, 75, 102, 106, 126, 308
Kargupta H......................116
Kato K.............................372
Kato N.........................68, 75, 102, 106, 126, 308
Keller B.........................66
Kendall G.......................296, 320
Kita H.........................23, 245, 280, 396
Kobayashi S....................280, 318, 396, 398, 399
Kok J.N............................42, 58
Konstant A.H...............34, 38, 97, 179
Krahenbuhl L....................342
Krasnogor N.....................353
Ku S..............................286
Kubalik J.......................154
Kundu M.K......................45, 97
Lai S..............................323
Lam H.K.........................340
Lasso M..........................237
Lazansky J......................154
<table>
<thead>
<tr>
<th>Index of keywords, authors and experiment domains</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lazarescu V 284</td>
</tr>
<tr>
<td>Lee B...................................... 123, 208, 235, 286</td>
</tr>
<tr>
<td>Lee C.-Y.................................. 148, 200</td>
</tr>
<tr>
<td>Lee Ch. 36, 49, 51, 163</td>
</tr>
<tr>
<td>Lee J.-D.................................. 366</td>
</tr>
<tr>
<td>Lee K.Y. 314</td>
</tr>
<tr>
<td>Lee S.-W. 364</td>
</tr>
<tr>
<td>Lefmann 121</td>
</tr>
<tr>
<td>Leiva A. 82, 237, 261, 303</td>
</tr>
<tr>
<td>Leung F.H.F. 340</td>
</tr>
<tr>
<td>Leung Y. W. 72, 266, 282</td>
</tr>
<tr>
<td>Li... 145, 338</td>
</tr>
<tr>
<td>Li F. 318</td>
</tr>
<tr>
<td>Li T.-H. 360</td>
</tr>
<tr>
<td>Li Yan-Da 49, 51</td>
</tr>
<tr>
<td>Lian Y. 185</td>
</tr>
<tr>
<td>Lim F...................................... 397</td>
</tr>
<tr>
<td>Lin W. 384</td>
</tr>
<tr>
<td>Ling S.H. 340</td>
</tr>
<tr>
<td>Lis J. 82, 91, 166</td>
</tr>
<tr>
<td>Liu G. 370</td>
</tr>
<tr>
<td>Liu Q.-H. 145</td>
</tr>
<tr>
<td>Liu T.-K. 344, 351, 355, 388</td>
</tr>
<tr>
<td>Liu Z. 323</td>
</tr>
<tr>
<td>Lobo F. 397</td>
</tr>
<tr>
<td>Logan T.D. 190, 192, 194, 196, 227</td>
</tr>
<tr>
<td>Louis S.J. 28, 47</td>
</tr>
<tr>
<td>Lozano M. 21, 22, 23, 30, 70, 158, 174, 206, 213, 215, 303, 316, 326, 353</td>
</tr>
<tr>
<td>Lutz R. 66</td>
</tr>
<tr>
<td>MacIntyre J. 123</td>
</tr>
<tr>
<td>Main H. 28, 47</td>
</tr>
<tr>
<td>Mainone G. 222</td>
</tr>
<tr>
<td>Maniezzi V. 390</td>
</tr>
<tr>
<td>Mao Zhi-Hong 49, 51</td>
</tr>
<tr>
<td>Massa A. 257, 392</td>
</tr>
<tr>
<td>Mayer H.A. 89, 116, 168</td>
</tr>
<tr>
<td>Mehrotra K. 28, 47, 80</td>
</tr>
<tr>
<td>Mezura-Montes E 394</td>
</tr>
<tr>
<td>Michalewicz M. 229, 231</td>
</tr>
<tr>
<td>Michalewicz Z........ 190, 192, 194, 196, 198, 227, 229, 231, 257, 329, 392</td>
</tr>
<tr>
<td>Miki M. 137, 139, 145, 396</td>
</tr>
<tr>
<td>Min F. 145</td>
</tr>
<tr>
<td>Ming L. 174</td>
</tr>
<tr>
<td>Mingshu Z 145, 384</td>
</tr>
<tr>
<td>Miyoshi T. 225, 314</td>
</tr>
<tr>
<td>Mohamed P.S. 314</td>
</tr>
<tr>
<td>Mohan C.K. 78, 80, 118</td>
</tr>
<tr>
<td>Mohan Ch 28, 47</td>
</tr>
<tr>
<td>Molina D. 353</td>
</tr>
<tr>
<td>Moon B.R. 70, 158, 174, 326</td>
</tr>
<tr>
<td>Moore M. 399</td>
</tr>
<tr>
<td>Moreira F.J.S. 342</td>
</tr>
<tr>
<td>Mühlenbein H................................ 20, 22, 60, 206, 213, 397</td>
</tr>
<tr>
<td>Munteanu C. 19, 270, 272, 284</td>
</tr>
<tr>
<td>Murata T. 158</td>
</tr>
<tr>
<td>Murthy A.S. 45</td>
</tr>
<tr>
<td>Murthy C.A. 62</td>
</tr>
<tr>
<td>Nakano R. 208</td>
</tr>
<tr>
<td>Nandi S. 45, 97</td>
</tr>
<tr>
<td>Narayanan A. 399</td>
</tr>
<tr>
<td>Naso D. 222</td>
</tr>
<tr>
<td>Nawa N.E. 68, 75</td>
</tr>
<tr>
<td>Nazhiyat G. 229, 231</td>
</tr>
<tr>
<td>Noel M.M. 390</td>
</tr>
<tr>
<td>Nomura T. 11, 12, 19, 25, 225, 270, 272, 314</td>
</tr>
<tr>
<td>Nong Y. 338</td>
</tr>
<tr>
<td>Nossal R. 89</td>
</tr>
<tr>
<td>Nowrouzian B. 222</td>
</tr>
<tr>
<td>Ohmukai I. 137, 139, 145</td>
</tr>
<tr>
<td>Ono I. 280, 318, 396</td>
</tr>
<tr>
<td>Ortiz-Boyer D. 398</td>
</tr>
<tr>
<td>Ozugur T. 25, 188</td>
</tr>
<tr>
<td>Paaß G. 60</td>
</tr>
<tr>
<td>Pal N.R. 45, 97</td>
</tr>
<tr>
<td>Pal S.K. 62, 91</td>
</tr>
<tr>
<td>Palazzari P. 40, 55, 141, 145</td>
</tr>
<tr>
<td>Pan F. 163</td>
</tr>
<tr>
<td>Pan X.-Q. 291, 368</td>
</tr>
<tr>
<td>Pandolfi D. 237</td>
</tr>
<tr>
<td>Park C.H. 34, 55</td>
</tr>
<tr>
<td>Park J. 36, 49, 51, 163</td>
</tr>
<tr>
<td>Park L.-J. 34, 55</td>
</tr>
<tr>
<td>Patnaik L.M. 203, 255, 274, 288, 291, 323, 368</td>
</tr>
<tr>
<td>Pelikan M. 397</td>
</tr>
<tr>
<td>Pham D.T. 251, 253</td>
</tr>
<tr>
<td>Pi L. .. 296</td>
</tr>
<tr>
<td>Pollack J.B. 25, 112, 130, 132, 135, 200</td>
</tr>
<tr>
<td>Pounds-Cronish A. 203</td>
</tr>
<tr>
<td>Premaratne M. 372</td>
</tr>
<tr>
<td>Price K.V. 233</td>
</tr>
<tr>
<td>Qiang L. 296</td>
</tr>
<tr>
<td>Qiao J.-F. 268, 375</td>
</tr>
<tr>
<td>Qifu X. 338</td>
</tr>
<tr>
<td>Ra J.W. 34, 55</td>
</tr>
<tr>
<td>Radcliffe N.J. 25</td>
</tr>
<tr>
<td>Ramirez J.A. 342</td>
</tr>
<tr>
<td>Ramos R.M. 342</td>
</tr>
<tr>
<td>Randolph D. 235</td>
</tr>
<tr>
<td>Ranka S. 28, 47</td>
</tr>
<tr>
<td>Rasheed K. 259</td>
</tr>
<tr>
<td>Raué P.-E. 42, 58</td>
</tr>
<tr>
<td>Rawlins G.J.E. 28, 47</td>
</tr>
<tr>
<td>Ray T. 397</td>
</tr>
<tr>
<td>Name</td>
</tr>
<tr>
<td>-------------------------------------</td>
</tr>
<tr>
<td>Riff-Rojas M.C.</td>
</tr>
<tr>
<td>Rosa A.</td>
</tr>
<tr>
<td>Rothkrantz L.J.M.</td>
</tr>
<tr>
<td>Ruan X.</td>
</tr>
<tr>
<td>Russo M.</td>
</tr>
<tr>
<td>Ruttkay Zs.</td>
</tr>
<tr>
<td>Sakawa M.</td>
</tr>
<tr>
<td>Sakuma J.</td>
</tr>
<tr>
<td>Salcic Z.</td>
</tr>
<tr>
<td>Saldanha R.R.</td>
</tr>
<tr>
<td>Salman A.A.</td>
</tr>
<tr>
<td>Salto C.</td>
</tr>
<tr>
<td>Sánchez A.M.</td>
</tr>
<tr>
<td>Sánchez-Velazco J.</td>
</tr>
<tr>
<td>Sano M.</td>
</tr>
<tr>
<td>Santamaria J.</td>
</tr>
<tr>
<td>Sastry K.</td>
</tr>
<tr>
<td>Sastry V.U.K.</td>
</tr>
<tr>
<td>Savage M.J.W.</td>
</tr>
<tr>
<td>Schlierkamp-Voosen D.</td>
</tr>
<tr>
<td>Schoenauer M.</td>
</tr>
<tr>
<td>Schütz M.</td>
</tr>
<tr>
<td>Schweef H.-P.</td>
</tr>
<tr>
<td>Seetharaman G.S.</td>
</tr>
<tr>
<td>Sharawi M.S.</td>
</tr>
<tr>
<td>Shimosaka H.</td>
</tr>
<tr>
<td>Shu L.-S.</td>
</tr>
<tr>
<td>Simões A.</td>
</tr>
<tr>
<td>Smith J.</td>
</tr>
<tr>
<td>Smith J.E.</td>
</tr>
<tr>
<td>Smith P.</td>
</tr>
<tr>
<td>Smith S.F.</td>
</tr>
<tr>
<td>Someya H.</td>
</tr>
<tr>
<td>Spears W.M.</td>
</tr>
<tr>
<td>Spirkovska L.</td>
</tr>
<tr>
<td>Spitzlinger M.</td>
</tr>
<tr>
<td>Srinivas M.</td>
</tr>
<tr>
<td>Stanley D.O.</td>
</tr>
<tr>
<td>Stidsen T.J.</td>
</tr>
<tr>
<td>Su L.-M.</td>
</tr>
<tr>
<td>Sun X.</td>
</tr>
<tr>
<td>Swaminathan S.</td>
</tr>
<tr>
<td>Takahashi M.</td>
</tr>
<tr>
<td>Takahashi R.H.C.</td>
</tr>
<tr>
<td>Tarantino E.</td>
</tr>
<tr>
<td>Tavares R.</td>
</tr>
<tr>
<td>Tekol Y.</td>
</tr>
<tr>
<td>Thierens D.</td>
</tr>
<tr>
<td>Troutt M.D.</td>
</tr>
<tr>
<td>Troya J.M.</td>
</tr>
<tr>
<td>Tsai J.-T.</td>
</tr>
<tr>
<td>Tsay M.-T.</td>
</tr>
<tr>
<td>Tsui H.-T.</td>
</tr>
<tr>
<td>Tsutsui S.</td>
</tr>
<tr>
<td>Turchiano B.</td>
</tr>
<tr>
<td>Unal R.</td>
</tr>
<tr>
<td>Unveren A.</td>
</tr>
<tr>
<td>van Kemenade C.H.M.</td>
</tr>
<tr>
<td>Vasconcelos J.A.</td>
</tr>
<tr>
<td>Vekaria K.</td>
</tr>
<tr>
<td>Venkatayalu N.</td>
</tr>
<tr>
<td>Verdegay J.L.</td>
</tr>
<tr>
<td>Villag A.</td>
</tr>
<tr>
<td>Villar P.</td>
</tr>
<tr>
<td>Voigt H.-M.</td>
</tr>
<tr>
<td>Voss M.S.</td>
</tr>
<tr>
<td>Vrajitoru D.</td>
</tr>
<tr>
<td>Wakefield J.P.</td>
</tr>
<tr>
<td>Wang H.</td>
</tr>
<tr>
<td>Wang W.Y.</td>
</tr>
<tr>
<td>Wang Y.</td>
</tr>
<tr>
<td>Wang Y.-P.</td>
</tr>
<tr>
<td>Watson R.A.</td>
</tr>
<tr>
<td>Wei L.</td>
</tr>
<tr>
<td>Wei P.</td>
</tr>
<tr>
<td>Whitley L.D.</td>
</tr>
<tr>
<td>Won K.S.</td>
</tr>
<tr>
<td>Wright A.H.</td>
</tr>
<tr>
<td>Wright J.A.</td>
</tr>
<tr>
<td>Wu C.-Y.</td>
</tr>
<tr>
<td>Wu Z.</td>
</tr>
<tr>
<td>Xiaohui Hu</td>
</tr>
<tr>
<td>Xiong W.-Q.</td>
</tr>
<tr>
<td>Xue Y.</td>
</tr>
<tr>
<td>Yamada T.</td>
</tr>
<tr>
<td>Yamamura M.</td>
</tr>
<tr>
<td>Yan W.</td>
</tr>
<tr>
<td>Yang G.-W.</td>
</tr>
<tr>
<td>Yang H.</td>
</tr>
<tr>
<td>Yang Junan</td>
</tr>
<tr>
<td>Yang Q.</td>
</tr>
<tr>
<td>Yang S.</td>
</tr>
<tr>
<td>Yang S.Y.</td>
</tr>
<tr>
<td>Yang Y.-M.</td>
</tr>
<tr>
<td>Yanjiao K.</td>
</tr>
<tr>
<td>Yen J.</td>
</tr>
<tr>
<td>Yimin Y.</td>
</tr>
<tr>
<td>Yongquan Y.</td>
</tr>
<tr>
<td>Yoon H.-S.</td>
</tr>
<tr>
<td>Yoshida J.</td>
</tr>
<tr>
<td>Yoshida Y.</td>
</tr>
<tr>
<td>Yu J.</td>
</tr>
<tr>
<td>Yu N.</td>
</tr>
<tr>
<td>Yuan B.</td>
</tr>
<tr>
<td>Yuhui Shi</td>
</tr>
<tr>
<td>Yunping C.</td>
</tr>
</tbody>
</table>
Yushu L...338
Zeng B...384
Zhang G.-Z....................................177
Zhang H.291, 368
Zhang Liang-Jie49, 51
Zhang Q.72, 266, 282
Zhang Y.-P....................................377
Zhao J. ...266, 268, 381
Zhao S. ...266, 368, 381
Zhou J. ...323
Zhou X.288, 370
Zhu Z...198
Zhuang Zhenquan399

auto-adjust scheme.............................379
averaging effect..................270, 272, 284
bacterial recombination..................68, 75
bio-adjusted scheme.............379
biologically site-specific recombination276
biologically inspired...... 68, 75, 102, 106,
126, 308
blindness of algorithm................377, 384
boundary of a feasible region.....229, 231
categorical variables...........................333
center of gravity268
chromosome differentiation..............91
chromosome structure........................116
closed operator........... 194, 196, 198, 227
combination of crossovers ...30, 70, 158,
174, 326
combination of differences.................130
competition for survival40
computational complexity.....55, 84, 185,
208, 213, 235, 298, 300, 314
constraints satisfaction , 72, 87, 143, 194,
196, 229, 231, 251, 253, 298, 300,
372, 394
contribution of parents to their offspring
..182, 362
convergence speed36, 49, 51, 55, 60,
123, 145, 161, 172, 185, 188, 213,
233, 245, 253, 255, 259, 276, 288,
291, 314, 320, 323, 333, 366, 370,
384, 392
convex continuous parameter space...194,
196
cross-gender cooperation166
crossover performance...............114
crossover probability..................255, 370
data clustering 386
dependency of variables180, 154
derivatives .. 253
deterministic crowding 132, 135
diploid chromosomes.....................198
directional search................... 306, 342
diverse parameters222
diversity...68, 75, 89, 102, 106, 126, 132,
135, 163, 172, 215, 225, 251, 253,
255, 268, 272, 284, 306, 308, 316,
320, 323, 333, 351, 353, 379
dominance ... 94
double string coding.................. 372
dynamic representation of gene position
..80
edeception 80, 154
effectiveness 66, 141, 143, 161, 172, 177,
190, 192, 206, 229, 231, 233, 270,
272, 286, 294, 303, 338, 340, 342,
351, 353, 368, 370, 392
esting 28, 318
exchanging relationships of genes .. 364
epistasis 28, 318

Experiment domains

10-bar truss problem............. 142, 144
25-bar truss problem............. 142, 144
2-dimensional shape matching
problem... 151
4-bit parity problem 205
6-bit deceptive problem 219
6-bit easy problem 219
6-Hump Camel Back function 111, 184
72-bar truss problem............. 142, 144
Ackley's function59, 67, 217, 312,
317
active power security correction on
power market................... 307
actuator hysteresis identification and
compensation............................. 371
aligning multiple protein sequence
problem.................................... 178
assembling parts into objects problem
.. 365
automatic generating numerical
control rules problem............. 385
Baluja's function 279
benchmark set of 65 set covering
problems................................. 88
bimodal equal spread function...... 212
bimodal function..................... 61, 79
Index of keywords, authors and experiment domains

bimodal unequal spread function212
bit counting function41
blocked function............................212
Bohachewsky's function 111, 315, 317
Branin's function ... 184, 359, 363, 376
busy beaver problem219
camel function..............................325
chaotic time-series prediction problem ...322
clique finding problem46
Colville's function317
concatenations of bipolar deceptive
problems...79, 120
concatenations of order-3 deceptive
problems...79, 120
conceptual design of a supersonic
aircraft...260
contrast stretching and detail
enhancements of satellite images
...285
Corana's function246, 279
data clustering benchmark sets......240
data clustering in dermatological
semiotics...387
De Jong's function... 27, 37, 39, 44, 49,
67, 77, 83, 85, 101, 111, 115, 129,
155, 171, 176, 184, 189, 191, 193,
199, 205, 212, 221, 234, 236, 238,
242, 244, 248, 256, 265, 269, 279,
319, 325, 359, 363, 376, 391
deceptive trap functions96
design of a three-stage membrane
separation process260
design of aerodynamic shape of a car
...65
design of digital finite impulse
response filters187
design of two-way crossover circuits
..153
determination of a bus access
schedule for a real-time LAN90
dynamic biochemical sensor
measurement characterization ...162
Eason's function ... 184, 238, 262, 363
economic load-dispatch problem...341
enhanced Steiner problems in graphs
...74
feature selection problem125
feature selection problem of pattern
recognition99
feature weights learning problem ...228
Fletcher-Powell's function171
frequency assignment problem ...328
fully deceptive 4-bit problem81
fully deceptive trap function41
function taken from the National
Crime Survey 35
fuzzy controller design 50, 52
fuzzy rule extraction problem226
Goldstein-Price's function...........169
graph bipartitioning79
graph bisection problems160
graph coloring problem... 44, 299, 302
graph partitioning 48
Griewank's function 59, 111, 115, 129,
138, 140, 176, 184, 207, 214, 238,
242, 244, 246, 248, 262, 265, 269,
317, 319, 354, 363, 376
Hamiltonian Circuit problems115, 176
HIFF problem113, 131, 134, 136
induction motor parameter estimation
...290
industrial simulation224
integrated steelmaking optimum cast
plan ...369
JSSP..155
Keane's function ...230, 232, 252, 254
knapsack problem202, 287
knowledge acquisition problem293
L-SAT problem generator96, 157
Mahfoud's function134, 136
max-cut problem122
Michalewicz & Schoenauer's
functions305, 395
Michalewicz's function ... 44, 59, 105,
111, 129, 210, 236
microwave imaging problem393
mixed variable bearing problem337
multi-dimensional pattern recognition
problems93
multimodal function ... 56, 165, 173
multi-objective function267
multi-objective optimization of logic
circuits383
n-bit adder................................. 29
n-bit parity checker....................29
non-stationary function252, 254
n-peak problems33
One-Max problem 54, 157, 219
optical components benchmark data
sets ...374
order-3 deceptive problem205
pattern matching problem 50, 52
plant allocation problem181
pole problem212
power plant control system design
problem315
Rastrigin's function 59, 111, 115, 129,
138, 140, 176, 212, 214, 217, 242,
Index of keywords, authors and experiment domains

<table>
<thead>
<tr>
<th>Keywords</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>244, 248, 265, 269, 281, 317, 319, 343, 354</td>
<td></td>
</tr>
<tr>
<td>Rechenberg's function</td>
<td>207</td>
</tr>
<tr>
<td>registration of computer tomography image and facial surface data problem</td>
<td>367</td>
</tr>
<tr>
<td>Ridge's function</td>
<td>138, 140</td>
</tr>
<tr>
<td>robot tracking problem</td>
<td>295</td>
</tr>
<tr>
<td>Royal Road function</td>
<td>54, 157, 219</td>
</tr>
<tr>
<td>SAT problems</td>
<td>115</td>
</tr>
<tr>
<td>satisfiability problem</td>
<td>69</td>
</tr>
<tr>
<td>Schaffer & Eshelman's trap function</td>
<td>54</td>
</tr>
<tr>
<td>Schaffer's function</td>
<td>67, 115, 147, 176, 184, 191, 193, 325, 363, 376</td>
</tr>
<tr>
<td>Schubert's function</td>
<td>67, 111, 359</td>
</tr>
<tr>
<td>Schwefel's function</td>
<td>59, 111, 115, 129, 138, 140, 169, 176, 242, 244, 248, 265, 269, 317, 354, 376</td>
</tr>
<tr>
<td>Shekel's function</td>
<td>184, 363</td>
</tr>
<tr>
<td>soft decision decoding of linear block codes</td>
<td>48</td>
</tr>
<tr>
<td>sphere function</td>
<td>217, 317, 354</td>
</tr>
<tr>
<td>stellar wave-front slopes prediction problem</td>
<td>322</td>
</tr>
<tr>
<td>trainer scheduling problem</td>
<td>297</td>
</tr>
<tr>
<td>transportation problems</td>
<td>195, 197</td>
</tr>
<tr>
<td>TSP</td>
<td>44, 48, 160, 167, 205, 312</td>
</tr>
<tr>
<td>unimodal function</td>
<td>214</td>
</tr>
<tr>
<td>V-cliff function</td>
<td>212</td>
</tr>
<tr>
<td>vector quantization problem</td>
<td>271, 273</td>
</tr>
<tr>
<td>V-function</td>
<td>212</td>
</tr>
<tr>
<td>VLSI standard cell placement</td>
<td>71</td>
</tr>
<tr>
<td>Watson's function</td>
<td>317</td>
</tr>
<tr>
<td>Whitley's function</td>
<td>155</td>
</tr>
<tr>
<td>XOR problem</td>
<td>205</td>
</tr>
<tr>
<td>zero/one multiple knapsack problem</td>
<td>117</td>
</tr>
<tr>
<td>factorial design methods</td>
<td>344, 347, 355</td>
</tr>
<tr>
<td>fitness driven crossover</td>
<td>28</td>
</tr>
<tr>
<td>fitness surface</td>
<td>257, 392</td>
</tr>
<tr>
<td>fixed mapping problem</td>
<td>211</td>
</tr>
<tr>
<td>fixed-locus scheme</td>
<td>112</td>
</tr>
<tr>
<td>fixed-locus scheme</td>
<td>112</td>
</tr>
<tr>
<td>gene pool</td>
<td>60</td>
</tr>
<tr>
<td>general applicability</td>
<td>78</td>
</tr>
<tr>
<td>global optima localization</td>
<td>66</td>
</tr>
<tr>
<td>global search ability</td>
<td>139</td>
</tr>
<tr>
<td>grammatical inference</td>
<td>66</td>
</tr>
<tr>
<td>Hamming cliff problem</td>
<td>211</td>
</tr>
<tr>
<td>hill-climbing</td>
<td>123, 208, 235, 276</td>
</tr>
<tr>
<td>hybridizing</td>
<td>123, 208, 235, 276</td>
</tr>
<tr>
<td>independent parameters</td>
<td>222</td>
</tr>
<tr>
<td>illegitimate transposition</td>
<td>102, 106, 126</td>
</tr>
<tr>
<td>implicit mutation</td>
<td>318</td>
</tr>
<tr>
<td>independence form coordinate system</td>
<td>263</td>
</tr>
<tr>
<td>independent component analysis</td>
<td>280</td>
</tr>
<tr>
<td>infection</td>
<td>68, 75</td>
</tr>
<tr>
<td>information destruction</td>
<td>36, 49, 51</td>
</tr>
<tr>
<td>information exchanging</td>
<td>36</td>
</tr>
<tr>
<td>intra-gender competition</td>
<td>166</td>
</tr>
<tr>
<td>King strategy</td>
<td>384</td>
</tr>
<tr>
<td>knowledge accumulation</td>
<td>94</td>
</tr>
<tr>
<td>knowledge-based crossover</td>
<td>47, 78, 118</td>
</tr>
<tr>
<td>landscape of the problem</td>
<td>257, 392</td>
</tr>
<tr>
<td>large optimization problems</td>
<td>253</td>
</tr>
<tr>
<td>Latin square</td>
<td>170</td>
</tr>
<tr>
<td>linear constraints</td>
<td>194, 196</td>
</tr>
<tr>
<td>linear convergence</td>
<td>213</td>
</tr>
<tr>
<td>linear improvement</td>
<td>251</td>
</tr>
<tr>
<td>linear non-convex combination</td>
<td>318</td>
</tr>
<tr>
<td>linkage</td>
<td>53</td>
</tr>
<tr>
<td>linkage equilibrium</td>
<td>60</td>
</tr>
<tr>
<td>linkage probabilities</td>
<td>80</td>
</tr>
<tr>
<td>local improvement</td>
<td>123, 208</td>
</tr>
<tr>
<td>local search ability</td>
<td>137</td>
</tr>
<tr>
<td>macromutation</td>
<td>220</td>
</tr>
<tr>
<td>main effect analysis</td>
<td>344, 347</td>
</tr>
<tr>
<td>mathematical relationships</td>
<td>364</td>
</tr>
</tbody>
</table>

G

- gene pool ... 60
- general applicability 78
- global optima localization 66
- global search ability 139
- grammatical inference 66

H

- Hamming cliff problem 211
- hill-climbing .. 123, 208, 235, 276
- hybridizing .. 123, 208, 235, 276

I

- independent parameters .. 222
- illegitimate transposition 102, 106, 126
- implicit mutation .. 318
- independence form coordinate system 263
- independent component analysis 280
- infection ... 68, 75
- information destruction ... 36, 49, 51
- information exchanging ... 36
- intra-gender competition ... 166

K

- King strategy ... 384
- knowledge accumulation ... 94
- knowledge-based crossover 47, 78, 118

L

- landscape of the problem ... 257, 392
- large optimization problems 253
- Latin square .. 170
- linear constraints ... 194, 196
- linear convergence ... 213
- linear improvement .. 251
- linear non-convex combination 318
- linkage .. 53
- linkage equilibrium ... 60
- linkage probabilities .. 80
- local improvement ... 123, 208
- local search ability ... 137

M

- macromutation ... 220
- main effect analysis .. 344, 347
- mathematical relationships ... 364

F

- factorial design methods 344, 347, 355
- fitness driven crossover .. 28
- fitness surface ... 257, 392
- fixed mapping problem ... 211
- fixed-locus scheme .. 112
<table>
<thead>
<tr>
<th>Mechanics of Crossover</th>
<th>218, 220</th>
</tr>
</thead>
<tbody>
<tr>
<td>Messy GA</td>
<td>272</td>
</tr>
<tr>
<td>Mixed Variable</td>
<td>333</td>
</tr>
<tr>
<td>Morphological Filters</td>
<td>338</td>
</tr>
<tr>
<td>Multi-Chromosomal Recombination</td>
<td>168</td>
</tr>
<tr>
<td>Multi-Chromosomal Representation</td>
<td>89, 168</td>
</tr>
<tr>
<td>Multi-Parent Crossover</td>
<td>42, 53, 55, 58, 60, 72, 82, 100, 143, 152, 170, 182, 198, 208, 229, 231, 235, 241, 243, 247, 249, 257, 261, 263, 303, 318, 360, 362, 375, 392, 394</td>
</tr>
<tr>
<td>Multiple Data Types</td>
<td>222, 333</td>
</tr>
<tr>
<td>N</td>
<td>neighborhood-based</td>
</tr>
<tr>
<td>Neurocomputing Model</td>
<td>375</td>
</tr>
<tr>
<td>Non-Coding Segments</td>
<td>116</td>
</tr>
<tr>
<td>Non-Convex Linear Combination</td>
<td>249</td>
</tr>
<tr>
<td>Non-Disruptive Crossover</td>
<td>36, 49, 51, 116</td>
</tr>
<tr>
<td>Non-Separable Fitness Function</td>
<td>280</td>
</tr>
<tr>
<td>Number of “1” Preservation</td>
<td>38, 45, 97, 179</td>
</tr>
<tr>
<td>Number of Crossover Points</td>
<td>163</td>
</tr>
<tr>
<td>O</td>
<td>Optimal Crossover Points</td>
</tr>
<tr>
<td>Orthogonal Array</td>
<td>72, 282, 344, 347, 355</td>
</tr>
<tr>
<td>Orthogonal Design</td>
<td>282, 344, 347, 355</td>
</tr>
<tr>
<td>Orthogonal GA</td>
<td>72, 282, 344, 347, 355</td>
</tr>
<tr>
<td>Orthogonal Latin Square</td>
<td>170</td>
</tr>
<tr>
<td>P</td>
<td>Panmictic Crossover</td>
</tr>
<tr>
<td>Parabolic Model</td>
<td>257, 392</td>
</tr>
<tr>
<td>Parallel Distributed GA</td>
<td>137, 139</td>
</tr>
<tr>
<td>Parameter Control</td>
<td>298</td>
</tr>
<tr>
<td>Parameters Estimation</td>
<td>249</td>
</tr>
<tr>
<td>Parent Differentiation</td>
<td>377</td>
</tr>
<tr>
<td>Parent-Centric Crossover</td>
<td>353</td>
</tr>
<tr>
<td>Partial Commitment</td>
<td>112</td>
</tr>
<tr>
<td>Partially Specified Representation</td>
<td>112</td>
</tr>
<tr>
<td>Performance</td>
<td>42, 58, 156, 172, 203, 294, 381</td>
</tr>
<tr>
<td>Precision</td>
<td>208, 211, 235, 351</td>
</tr>
<tr>
<td>Preservation of Similarity</td>
<td>130</td>
</tr>
<tr>
<td>Principal Component Analysis</td>
<td>280</td>
</tr>
<tr>
<td>Probability of Gene Crossover</td>
<td>366</td>
</tr>
<tr>
<td>Problem-Specific Knowledge</td>
<td>47, 78, 118</td>
</tr>
<tr>
<td>Processing Time</td>
<td>237, 261</td>
</tr>
<tr>
<td>Projections</td>
<td>253</td>
</tr>
<tr>
<td>Promoter</td>
<td>116</td>
</tr>
<tr>
<td>Q</td>
<td>Quadratic Representation of Search Domain</td>
</tr>
<tr>
<td>Quality of Parents</td>
<td>388</td>
</tr>
<tr>
<td>Quality of Solution</td>
<td>276</td>
</tr>
<tr>
<td>Quantization</td>
<td>266, 282, 344, 347</td>
</tr>
<tr>
<td>R</td>
<td>Ranking</td>
</tr>
<tr>
<td>Real-Time System Design</td>
<td>89</td>
</tr>
<tr>
<td>Recombination Model</td>
<td>30, 70, 158, 174, 326</td>
</tr>
<tr>
<td>Reduced-Form Genetic Algorithm</td>
<td>360</td>
</tr>
<tr>
<td>Reliability</td>
<td>208, 235</td>
</tr>
<tr>
<td>S</td>
<td>Schema</td>
</tr>
<tr>
<td>Schema Preservation</td>
<td>28, 53, 123, 145, 154, 188</td>
</tr>
<tr>
<td>Schema Ranking</td>
<td>188</td>
</tr>
<tr>
<td>Search Direction</td>
<td>251, 253</td>
</tr>
<tr>
<td>Selection</td>
<td>40</td>
</tr>
<tr>
<td>Selective Pressure</td>
<td>255, 316</td>
</tr>
<tr>
<td>Self-Similarity</td>
<td>132, 135</td>
</tr>
<tr>
<td>Semantic Hierarchy</td>
<td>62</td>
</tr>
<tr>
<td>Separability of Fitness Function</td>
<td>245, 280, 318</td>
</tr>
<tr>
<td>Set-Oriented</td>
<td>286</td>
</tr>
<tr>
<td>Sex</td>
<td>82, 91, 166</td>
</tr>
<tr>
<td>Sex Separation</td>
<td>166</td>
</tr>
<tr>
<td>Signal-to-Noise Ratio</td>
<td>355</td>
</tr>
<tr>
<td>Similarity</td>
<td>25, 62</td>
</tr>
<tr>
<td>Simplex Method</td>
<td>208, 235</td>
</tr>
<tr>
<td>Small Population Sizes</td>
<td>274</td>
</tr>
<tr>
<td>Sociological Model</td>
<td>390</td>
</tr>
<tr>
<td>Speed of Algorithm</td>
<td>84, 294, 377, 381</td>
</tr>
<tr>
<td>Speed of Searching</td>
<td>360</td>
</tr>
<tr>
<td>Statistics-Based</td>
<td>156</td>
</tr>
<tr>
<td>Structural Information</td>
<td>121</td>
</tr>
<tr>
<td>Sum of Values Preservation</td>
<td>227</td>
</tr>
<tr>
<td>T</td>
<td>Taguchi Method</td>
</tr>
<tr>
<td>Terminator</td>
<td>116</td>
</tr>
<tr>
<td>Tightly Linked Building Blocks</td>
<td>116</td>
</tr>
</tbody>
</table>
Index of keywords, authors and experiment domains

U

ultilization of genetic information.....251, 253
underspecified representation...........112
uniform array266
uniform design266
uniform GA..266
usefulness of crossover218, 220

V

variable length chromosome62, 148, 200, 222, 239, 286, 296, 308, 320, 386
variable length parameters.............222
variable-to-variable recombination34, 55, 143